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We report the results obtained from the application of our previously proposed linearized semiclassical method
for computing vibrational energy relaxation (VER) rates (J. Phys. Chem. A2003, 107, 9059, 9070) to neat
liquid oxygen, neat liquid nitrogen, and liquid mixtures of oxygen and argon. Our calculations are based on
a semiclassical approximation for the quantum-mechanical force-force correlation function, which puts it in
terms of the Wigner transforms of the force and the product of the Boltzmann operator and the force. The
calculation of the multidimensional Wigner integrals is made feasible by the introduction of a local harmonic
approximation. A systematic analysis has been performed of the temperature and mole-fraction dependences
of the VER rate constant, as well as the relative contributions of centrifugal and potential forces, and of
different types of quantum effects. The results were found to be in very good quantitative agreement with
experiment, and they suggest that this semiclassical approximation can capture the quantum enhancement, by
many orders of magnitude, of the experimentally observed VER rate constants over the corresponding classical
predictions.

I. Introduction

Vibrational energy relaxation (VER) is the process where an
excited vibrational mode equilibrates by transferring its excess
energy into other intramolecular and/or intermolecular degrees
of freedom (DOF). VER is prevalent in many systems of
fundamental, technological and biological importance, and plays
a central role in determining chemical reactivity. It is therefore
not surprising that the measurement and calculation of VER
rates have received much attention over the past few decades.1-46

Recent theoretical and computational studies of VER have been
mostly based on the Landau-Teller formula,15,47,48which gives
the VER rate constant in terms of the Fourier transform (FT),
at the vibrational frequency, of thequantum-mechanicalauto-
correlation function of the fluctuating force exerted on the
relaxing mode by the other DOF.

As was pointed out by several authors, replacing the quantum-
mechanical force autocorrelation function by its classical
counterpart is in general unjustified. This is because in most
cases, the frequency of the relaxing vibrational mode is either
comparable to or larger thankBT/p. Indeed, discrepancies by
many orders of magnitude have been reported between experi-
mentally measured VER rates and corresponding predictions
that were based on classical molecular dynamics (MD) simula-
tions. At the same time, the exact calculation of real-time
quantum-mechanical correlation functions for general anhar-
monic many-body systems remains far beyond the reach of
currently available computer resources, due to the exponential
scaling of the computational effort with the number of DOF.49

The most popular approach for dealing with this difficulty, in
the case of VER, is based on multiplying the classical prediction
for the VER rate constant by a frequency-dependentquantum
correction factor(QCF).7,50-65 In fact, a variety of different* Corresponding author. E-mail: eitan@umich.edu.
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approximate QCFs have been proposed in the literature.
Unfortunately, estimates obtained from different QCFs can differ
by orders of magnitude, and particularly so when high-frequency
vibrations are involved. Thus, the development of more rigorous
methods for computing VER rate constants is clearly highly
desirable.

In two previous papers,66,67we have proposed a more rigorous
approach for calculating VER rate constants, which is based
on linearizing the forward-backward action in the path integral
expression for the quantum force autocorrelation function (the
linearization is with respect to the difference between the
forward and backward paths68). It should be noted that the same
approximation can be derived in several other ways, including
linearization of the forward-backward action in the semiclas-
sical initial value representation approximation for the correla-
tion function,69-75 and starting from the Wigner representation
formalism.76 The resultinglinearized semiclassical(LSC) ap-
proximation, for a general real-time quantum mechanical
correlation function, is given by [here, as in the rest of this paper,
we use boldface symbols for vectors, and capped symbols (e.g.,
Â) for operators]:

whereN is the number of DOF,q0 ) (q0
(1),..., q0

(N)) andp0 )
(p0

(1),..., p0
(N)) are the corresponding coordinates and momenta

is the Wigner transform of the operatorÂ,77 and qt
(Cl) )

qt
(Cl)(q0,p0) andpt

(Cl) ) pt
(Cl)(q0, p0) are propagatedclassically

with the initial conditionsq0 andp0. The major advantage of
the LSC approximation has to do with its computational
feasibility (although computing the Wigner transform in systems
with many DOF is not trivial66,67,70). The LSC approximation
has the additional attractive features of being exact att ) 0, at
the classical limit, and for harmonic systems. Its main disad-
vantage has to do with the fact that it can only capture quantum
dynamical effects that arise from short-time interferences
between the various trajectories (the longer time dynamics is
purely classical).71 However, it should be noted that in
condensed phase systems in general, and in the case of high-
frequency VER in particular, the quantities of interest are often
dominated by the short-time dynamics of the correlation
functions.

In practice, using the LSC approximation, eq 1, requires the
calculation of the phase-space integrals underlying the Wigner
transforms. The numerical calculation of those integrals is
extremely difficult in the case of many-body anharmonic
systems, because of the oscillatory phase factor, e-ip0∆/p, in the
integrand. In refs 66 and 67, this problem was dealt with by
using a local harmonic approximation (LHA), which allowed
for an analytical evaluation of the Wigner integral. The emerging
LHA-LSC approximation has been tested on several benchmark
problems in ref 66, and it was found to be in very good
agreement with the exact results or their best estimates. It was
also observed that high frequency VER is dominated by a purely
quantum mechanical term which is not accounted for in classical
MD simulations. The first application of the LHA-LSC method
to a molecular liquid was reported in ref 67, where it was used
for calculating the extremely slow (k0r1 ) 395 s-1) and highly
quantum-mechanical (pω/kBT ) 29) VER rate constant in neat

liquid oxygen at 77 K. The VER rate constant obtained via the
LHA-LSC approximation was found to be 4 orders of
magnitude larger than the corresponding classical prediction,
and in very good quantitative agreement with experiment.

In this paper, we present a detailed analysis of VER rates, as
obtained via the LHA-LSC approximation, in neat diatomic
liquids and diatomic-atomic liquid mixtures. The following
aspects, that were not discussed in previous papers, are
considered: (1) the temperature dependence of the VER rate
constant (in the case of neat liquid oxygen); (2) the mole fraction
dependence (in the case of argon-oxygen liquid mixtures); (3)
the relative importance of different quantum effects; (4) the
relative contributions of centrifugal and potential forces. In
addition, we also report the results obtained via the LHA-LSC
approximation for the VER rate constant in liquid nitrogen at
77 K. A comparison to the experimental results and the
corresponding predictions obtained by using QCFs is also
provided.

The structure of the remainder of this paper is as follows.
The model Hamiltonian of a liquid atomic-diatomic mixture
and theoretical framework for VER calculations are outlined
in section II. An overview of our LHA-LSC method for
calculating VER rates is given in section III. The simulation
techniques used for calculating the LHA-LSC approximation
for the force autocorrelation functions are described in section
IV. The results for VER in neat liquid oxygen, neat liquid
nitrogen and argon-oxygen liquid mixtures are reported and
analyzed in section V. We conclude in section VI with a
summary of the main results and some discussion on their
significance. Explicit mathematical expressions for quantities
required for the evaluation of the LHA-LSC approximation
are provided in the Appendix.

II. Model

The atomic-diatomic liquid mixture model that we used has
been adopted from ref 78, where it was used for calculating
VER rate constants within the framework of the QCF approach.
We consider a liquid mixture that consists ofNa atoms and
Nm + 1 diatomic molecules, where one of the molecules is
vibrationally excited, while the rest are assumed to be rigid (the
case ofNa ) 0 corresponds to a neat diatomic liquid). The
overall Hamiltonian is given by

where

is the intramolecular vibrational Hamiltonian of the relaxing
diatomic molecule (q̂, p̂, µ and ω are the corresponding
coordinate, momentum, reduced mass, and frequency, respec-
tively);

Tr(e-âĤeiĤt/pB̂e-iĤt/pÂ) ≈
1

(2πp)N∫ dq0 ∫ dp0(Âe-âĤ)W(q0, p0)BW(qt
(Cl), pt

(Cl)) (1)

AW(q,p) ) ∫ d∆ e-ip∆/p〈q + ∆/2| Â|q - ∆/2〉 (2)

Ĥ ) Ĥq + Ĥb - q̂F̂ (3)

Ĥq ) p̂2

2µ
+ 1

2
µω2q̂2 (4)

Ĥb ) ∑
j)1

Na (P̂a
(j))2

2Ma

+ ∑
j)0

Nm ((P̂m
(j))2

2Mm

+
(L̂(j))2

2I ) +

∑
j)0

Nm-1

∑
k)j+1

Nm

∑
R,â)1

2

φmm(|r̂ (jR) - r̂ (kâ)|) +

∑
j)1

Na-1

∑
k)j+1

Na

φaa(|r̂ (j) - r̂ (k)|) + ∑
j)1

Na

∑
k)0

Nm

∑
R)1

2

φam(|r̂ (j) - r̂ (kR)|) (5)
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is the overall Hamiltonian of the translational and rotational
DOF [Ma is the atomic mass,Mm is the molecular mass,I is
the moment of inertia of the diatomic molecule,P̂a

(j) is the
momentum of thejth atom,P̂m

(j) is the center of mass momen-
tum of thejth diatomic molecule,L̂(j) is the angular momentum
of the jth diatomic molecule,r̂ (k) is the position of thejth atom,
andr̂ (jR) is the position of theR site on thejth diatomic molecule
(R ) 1, 2)]; -q̂F̂ is the coupling between the relaxing vibrational
mode and the other DOF.

The main quantity of interest isF̂, which corresponds to the
force exerted on the vibrational mode of the relaxing molecule
by the translational and rotational DOF. This force consists of
a sum of potential79-81 and centrifugal82,83 terms (F̂U and F̂T,
respectively). Identifying the zeroth molecule as the relaxing
molecule, those terms are explicitly given by

whereû(0â) corresponds to a unit vector pointing from the center
of mass of the relaxing molecule to its siteâ, and

wherere is the equilibrium bond length of the diatomic molecule.
The termĤb in eq 5 involves three types of pair potentials:

(1) atom-atom interaction potential,φaa(r); (2) diatom-diatom
site-site interaction potential,φmm(r); and (3) atom-diatom
interaction potentialφam(r). Following ref 78, we assume that
all of those pair potentials are of the Lennard-Jones (LJ) type:

The following parameters were employed in the case of liquid
mixtures of oxygen and argon:re ) 1.208 Å,εmm ) 48.0kB K,
σmm ) 3.0060 Å, εam ) 75.8kB K, σam ) 3.2325 Å, εaa )
119.8kB K, σaa ) 3.4050 Å. It should be noted that the values
of εmmandσmmwere adopted from ref 84, and they are different
then those originally used in ref 78. It should also be noted that
for the pair potential employed, the two sites coincide with the
equilibrium locations of the oxygen nuclei (which is not the
case for the potential used in ref 78). In the case of neat liquid
nitrogen, we have employed the same values of the parameters
as used in ref 57, namelyre ) 1.094 Å,εmm ) 37.3kB K, and
σmm) 3.310 Å. The values of the mole fractions, temperatures,
and densities used in the simulations are shown in Table 1.

III. The Linearized Semiclassical Approximation

In this study, we focus on the relaxation from the first excited
vibrational state to the ground state of a homonuclear diatomic
molecule. We will also assume that the rate constant for this
process is given by the Landau-Teller formula15,47 (the as-
sumptions underlying this expression have been discussed by
many authors; e.g., see the discussion in ref 85):

where

and

is the quantum-mechanical force-force correlation function
(FFCF). Here,〈Â〉 ) Tr[e-âĤbÂ]/Zb, Zb ) Tr[e-âĤb] and δF̂ )
F̂ - 〈F̂〉. Equation 9 gives the VER rate constant,k0r1, in terms
of the FT, at the vibrational frequency,ω, of the FFCF,C(t). It
should be noted thatCR(t) andCI(t) in eq 10 are the real and
imaginary parts of the FFCF, respectively.

The LSC approximation of the quantum-mechanical FFCF,
eq 11, assumes the following form:66-68

Here,Qt
(Cl) ) Qt

(Cl)(Q0, P0) andPt
(Cl) ) Pt

(Cl)(Q0, P0) correspond
to the Cartesian coordinates and momenta of all the atoms,
which are propagated classically with the initial conditionsQ0

andP0. A direct calculation of this approximation in the case
of an anharmonic many-body system, would require the
calculation of the multidimensional Wigner phase-space integral
in eq 2. Unfortunately, it is extremely difficult to perform this
calculation via conventional Monte Carlo (MC) techniques, due
to the oscillatory phase factor, e-iP0∆/p, in the integrand. This
problem can be circumvented by employing a local harmonic
approximation (LHA), whereby one effectively expands Hˆ b to
second order aroundQ0, followed by an analytical integration
of the resulting Gaussian integral over∆. The resulting LHA-
LSC approximation for the FFCF assumes the following form:

F̂U )
1

2
∑
j)1

Nm

∑
R,â)1

2

φ′mm(|r̂ (jR) - r̂ (0â)|)
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+

1

2
∑
j)1
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∑
â

φ′am(|r̂ (j) - r̂ (0â)|)
(r̂ (j) - r̂ (0â))·û(0â)

|r̂ (j) - r̂ (0â)|
(6)

F̂T )
(L̂(0))2

Ire
(7)

φij(r) ) 4εij[(σij

r )12

- (σij

r )6] (8)

k0r1 ) 1
2µpω

C̃(ω) (9)

TABLE 1: Values of the Mole Fractions, Temperatures and
Densities Used in the Simulations

system mole fraction temp (K) density (nm-3) ref

neat N2 1.0 77 17.37 90
neat O2 1.0 60 24.13 91

1.0 65 23.71 91
1.0 70 23.28 91
1.0 77 22.64 91
1.0 80 22.41 91
1.0 85 21.96 91
1.0 90 21.50 91

O2/Ar 0.30 77 22.15 78
0.50 77 22.29 78
0.70 77 22.43 78
0.85 77 22.50 78

C̃(ω) ) ∫-∞

∞
dt eiωtC(t) ) 4

1 + e-âpω ∫0

∞
dt cos(ωt)CR(t) )

- 4

1 - e-âpω ∫0

∞
dt sin(ωt)CI(t) (10)

C(t) ) CR(t) + iCI(t) ) 〈δF̂(t)δF̂〉 )
1
Zb

Tr[e-âĤbeiĤbt/pδF̂e-iĤbt/pδF̂] (11)

C(t) ≈ 1
Zb

1

(2πp)N ∫ dQ0 ∫ dP0 [δF̂e-âĤb]W (Q0, P0)

δFW(qt
(Cl),Pt

(Cl)) (12)

C(t) ≈ ∫ dQ0

〈Q0|e-âĤb|Q0〉

Zb

∫ dPn,0 ∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ][δFU(Q0) + δFT(Pn,0) + DU(Q0,Pn,0) +

DT(Q0, Pn,0)][δFU(Qt
(Cl)) + δFT(Pn,t

(Cl))] (13)
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Here, {P̂n
(k)} are mass-wighted normal mode momenta, as

obtained from the expansion ofĤb to second order aroundQ0

(the LHA), andR(j) ) Ω(j) coth[âpΩ(j)/2]/p, where{(Ω(k))2}
are the eigenvalues of the corresponding Hessian matrix (explicit
expressions of the potential derivatives underlying the LHA for
the model considered here are provided in the appendix). The
termsDT(Q0,Pn,0) and DU(Q0,Pn,0), which originate from the
centrifugal and potential forces, respectively, are purely quantum-
mechanical [i.e., they vanish at the classical (p f 0) limit].
Those terms represent quantum nonlocality, and can be traced
back to the fact that [F̂e-âĤb]w * [F̂]w × [e-âĤb]w. Explicit
expressions for those terms can be found in ref 67, and some
detailed expressions of quantities required for their evaluation
(for the model under discussion) are provided in the Appendix.
Another quantum-mechanical effect is introduced by the fact
that the initial sampling of the positions and momenta is
nonclassical. More specifically, the initial sampling of the
positions is based on the exact quantum mechanical position
probability density,〈Q0|e-âĤb|Q0〉/Zb, while the initial sampling
of the momenta is based on the nonclassical probability density
∏j)1

N (1/R(j)πp2)1/2 exp[-(Pn,0
(j) )2/p2R(j)].

IV. Simulation Techniques

The computational algorithm employed for calculating the
approximate FFCF in eq 13 is similar to that described in refs
66 and 67 and follows the following steps.

1. In the first step, we sample the initial positions of all the
atoms in the simulation cell via a PIMD simulation, based on
the probability density Prob(Q0) ) 〈Q0|e-âĤb|Q0〉/Zb. It should
be noted that the initial configurations sampled must also satisfy
the constraints imposed by the rigidity of the molecules.67 We
performed such PIMD simulations with an overall number of
500 atomsand molecules in the simulation cell. Each atom
(either belonging to a molecule or not) was represented by a
chain polymer consisting of 16 beads. Thermalization was
imposed by attaching a Nose-Hoover chain thermostat to each
of the beads, and the dynamics has been computed by using
the velocity Verlet algorithm.86 The sampling was performed
by choosing random beads from snapshots of the isomorphic
liquid of cyclic polymers.

2. In the second step, we randomly select one of the molecules
in the simulation cell and designate it as the relaxing molecule.
Next, the 20-30 atoms and molecules which are closest to the
relaxing molecule are identified, and form the “active cluster”.67

The next 60-80 closest atoms and molecules are then identified,
and their positions are kept fixed throughout the rest of the
simulation (those frozen atoms and molecules serve as a static
cage which prevents the cluster from falling apart).

3. In the third step, we calculate the normal-mode frequencies
and transformation matrix for the atoms in the active cluster,
via the Jacobi method,87 and use them in order to sample the
initial normal mode momenta. Here too, we restrict ourselves
to normal-mode displacements which satisfy the constraints
imposed by the rigidity of the molecules.67

4. In the fourth step, the cluster atoms and molecules are
allowed to evolve in time via a classical MD simulation (still
maintaining the constraints imposed by the rigidity of the
molecules67), to obtain the force on the relaxing molecule at
time t. The velocity Verlet algorithm with a time step of 4 fs
has been used in the simulations reported here.

5. Steps 1-4 are repeated for many initial cluster-cage
configurations, and the results are averaged in order to obtain
the desired FFCF. The results reported below are based on
averaging (1-4) × 106 initial cluster-cage configurations.

Once the FFCF is obtained, its FT is calculated. All of the
results reported below were based on the cosine transform of
the real part of the FFCF [see eq 10]. The FT of the FFCF at
the very high vibrational frequencies of diatomic molecules like
oxygen (1553 cm-1) and nitrogen (2327 cm-1) is a very small
number, and therefore very difficult to compute directly.
Following the common practice, we instead extrapolate the
exponential gap law, which usually emerges at low frequencies,
to much higher frequencies.88,89Assuming that this extrapolation
is the major source of error, we evaluated the error bars reported
for the VER rate constants based on the least-squares fit to the
corresponding linear frequency dependence of the VER rate
constant (on a semilog scale).

V. Results

We start out with a detailed analysis of VER in neat liquid
oxygen and neat liquid nitrogen, at 77 K. The results obtained
for the VER rate constant via the LHA-LSC method are
presented in Table 2, alongside the experimental results1,6 and
predictions based on the best performing QCFs (cf. ref 66 for
the explicit definitions of those QCFs). It should be noted that
the results for oxygen are slightly different then those reported
in our previous paper.67 The difference between the results is
mostly due to more extensive averaging and the somewhat more
refined extrapolation procedure employed in the present paper.
As can be seen, the LHA-LSC-based prediction for the VER
rate constant in neat liquid oxygen is larger by a factor of about
two than the experimental result. This represents a dramatic
improvement in comparison to the classical prediction which
is smaller than the experimental result by a factor of about 104.
It should also be noted that the Egelstaff and mixed harmonic-
Schofield QCFs happen to yield predictions of similar quality
to the one based on LHA-LSC.

In the case of neat liquid nitrogen, the classical prediction
for the VER rate constant is smaller by a factor of 108 in
comparison to the experimental value. This can be attributed
to the significantly higher vibrational frequency of nitrogen. At
the same time, the LHA-LSC-based prediction for the VER
rate constant turns out to be smaller only by a factor of 10 in
comparison to the experimental value. In fact, it has been argued
that the rate of nonradiative VER in neat liquid nitrogen is so
slow, such that the experimentally measured value is actually
dominated by radiative VER.1,57 If so, the nonradiative VER
rate constant should in fact be smaller than the experimental
value. The LHA-LSC-based prediction is consistent with this
point of view, as well as with the reported estimated upper
bound for the nonradiative VER rate constant (0.004 s-1).1

Finally, here too, one observes that the Egelstaff and mixed
harmonic-Schofield QCFs yield predictions which happen to
be of similar quality to LHA-LSC.

In Figures 1 and 2, we show the FFCF in the time and
frequency domains (the latter is shown on a semilog plot), as
obtained via the LHA-LSC method, for neat liquid oxygen and
neat liquid nitrogen at 77 K. Figures 1a and 2a also show the
contributions to the FFCF from the classical [FU + FT][FU(t)

TABLE 2: k0r1/s-1 for Neat Liquid O 2 and Neat Liquid N2
at 77 K

O2 N2

experiment1,6 395( 18 (1.8( 0.5)× 10-2

classical (285( 31)× 10-4 (3.1( 0.4)× 10-10

LHA-LSC 783( 62 (1.9( 0.3)× 10-3

harmonic 8.3( 0.4 (9.8( 1.0)× 10-7

Egelstaff 1373( 113 (3.6( 0.7)× 10-3

mixed harmonic-Schofield 677( 27 (1.4( 0.2)× 10-3
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+ FT(t)] term and nonclassical [DU + DT][FU(t) + FT(t)] term
(the initial sampling is nonclassical in both cases). The contribu-
tions of those two terms to the FT of the FFCF are shown in
Figures 1b and 2b. While the classical term is observed to
dominate the FFCF in the time domain, the nonclassical term
is observed to dominate the behavior of its FT, and therefore
VER, at high frequencies. It is important to note that the
nonclassical term vanishes at the classical limit, and can
therefore not be directly accounted for by classical MD
simulations. Furthermore, there seems to be no straightforward

way of representing the contribution of this nonclassical term
in the form of some sort of a multiplicative QCF.

Figures 1c and 2c show the contributions to the FFCF from
the terms, [FT + DT]FT(t) and [FU + DU]FU(t)], which arise
from the centrifugal and potential forces, respectively (cross
terms are not shown explicitly, but can be deduced from the
difference between the overall FFCF and the diagonal contribu-
tions). The corresponding contributions in the frequency domain
are shown in Figures 1d and 2d. The VER rate is clearly
dominated by the potential force in both time and frequency
domains, and particularly so at high frequencies. This observa-
tion is reminiscent of similar observations made based on
classical simulations. However, a closer inspection reveals that
the main contribution to the FT at high frequencies comes from
the nonclassical potential force term,DUFU(t). Furthermore, the
contribution, at high frequencies, of the classical-like potential
term, FUFU(t), appears to be comparable to, and even smaller
than, that of the classical-like centrifugal term,FTFT(t) [see
Figures 1e,f and 2e,f]. This behavior, which is clearly different
from that observed in classical simulations, can be attributed
to the nonclassical sampling.

We next consider the dependence of the VER rate on
temperature. To this end, we calculated the VER rate constant
for neat liquid oxygen at seven different temperatures between
60 and 90 K. Our choice of system and temperature range was
motivated by the availability of experimental results, which one
can compare to in the lack of numerically exact benchmark
calculations.6 The results obtained via LHA-LSC are shown
on regular and semilog plots in Figure 3, alongside the
experimental values6 and predictions obtained by using various
QCFs. Similarly to the experimental results, the LHA-LSC-
based VER rate constant is seen to monotonically increase with

Figure 1. Force-force correlation function (a, c, e) and its Fourier
transform (b, d, f), for neat liquid oxygen at 77 K. Also shown are the
relative contributions of the classical-like and quantum nonlocal terms
(a, b), the centrifugal and potential forces (c, d), and a partial breakup
of the potential and centrifugal terms into classical and nonclassical
terms (e, f).

Figure 2. Same as Figure 1, for neat liquid nitrogen at 77 K.

Figure 3. Temperature dependence of the VER rate constant in neat
liquid oxygen on regular (upper panel) and semilog (lower panel) scales.
Shown are the results obtained via the LHA-LSC method, as well as
the corresponding experimental rate constants, and results obtained by
using a variety of QCFs.
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temperature. Classical mechanics, as well as most QCFs, also
predict VER rate constants that monotonically increase with
temperature (the only exception is the Schofield QCF, where
the VER rate constant is a monotonically decreasing function
of temperature). The quantitative agreement between LHA-
LSC and the experimental results remains very good throughout
the entire temperature range. The results obtained via the LHA-
LSC method are also seen to be rather similar to predictions
based on the Egelstaff and mixed harmonic-Schofield QCFs.
Interestingly, when compared on a regular scale, LHA-LSC
seem to predict a temperature dependence which is significantly
stronger in comparison to experiment (as do the Egelstaff and
mixed harmonic-Schofield QCFs). The specific origin for this
discrepancy is hard to trace, but could be conceivably due to
inaccuracies in the interaction potentials.

We have also explored the relative importance of nonclassical
initial sampling as a function of temperature. To this end, we
have recalculated the VER rate constants for neat liquid oxygen
within the temperature range (60, 90 K), without the contribu-
tions from the nonlocal quantum terms,DU andDT (cf. Figure
4). As the results clearly demonstrate, nonclassical initial
sampling alone cannot quantitatively account for the enhance-
ment of the VER rate relative to the corresponding classical
result. More specifically, while the LHA-LSC VER rate
constant is about 4 orders of magnitude larger than the classical
result, nonclassical sampling can only account for an enhance-
ment by 2 orders of magnitude. To obtain a quantitative
agreement with experiment, it is necessary to include the
nonlocal termsDU andDT. We have also attempted a calculation
of the VER rate which included the nonlocal terms, but was
based onclassical sampling. We have found that such a
treatment does not give rise to an exponential gap law at
intermediate frequencies. Thus, in this case, it was not possible
to obtain meaningful results by performing an extrapolation to
higher frequencies.

Another interesting aspect of VER in diatomic liquids has to
do with the relative contributions of potential and centrifugal
forces. To this end, we recalculated the VER rate constant in
liquid oxygen by only taking into account either the potential
force, the centrifugal force, or the cross terms. The results are
presented in Figure 5. It should be noted that the centrifugal

contribution is characterized by relatively large error bars, which
is indicative of deviations from an exponential gap law (i.e.,
linearity as a function of frequency on a semilog plot). One
observation that can be made based on Figure 5, is that the
potential and cross terms dominate VER within the temperature
range considered. However, it should be noted that the contribu-
tions from the potential and cross terms decrease rapidly with
temperature, while the contribution of the centrifugal term is
rather insensitive to temperature. This observation is qualitatively
different from the corresponding classical result, where the
centrifugal term is seen to rapidly decrease with decreasing
temperature. Further analysis seems to suggest that this insen-
sitivity originates from nonclassical momentum sampling. In
this context, it is interesting to note that the width of the
momentum sampling function becomes insensitive to temper-
ature at lower temperatures and higher frequencies [cf. eq 13],
and note thatR(j) f Ω(j)/p whenâpΩ(j) . 1. Exploring whether
the centrifugal term becomes the dominant one at even lower
temperatures is not possible since oxygen freezes at 54.8 K.

We next consider the dependence of the VER rate constant
on the oxygen mole fraction, in oxygen-argon liquid mixtures,
at 77 K. Here, too, the choice of system is motivated by the
availability of experimentally measured VER rate constants.6

The LHA-LSC results are presented in Figure 6, in terms of
the ratiok0r1(x)/k0r1(1), wherek0r1(x) is the actual VER rate
constant for a mixture where the oxygen mole fraction isx.
Also shown are the corresponding experimental results, and
predictions based on classical mechanics and the Egelstaff QCF.
It should be noted that the other QCFs correspond to multiplying
the classical VER rate constant by a factor, which is independent
of x, and therefore gives the same values ofk0r1(x)/k0r1(1) as
classical mechanics. The VER rate is seen to nonlinearly
increase with increasing oxygen mole fraction, and the results
obtained via all methods indeed follow this trend. The LHA-
LSC results are also seen to be in very good quantitative
agreement with the experimental results, except at the lowest
values of the oxygen mole fraction. While the agreement
between the experimental results and classical predictions (as
well as the predictions of all QCFs, except for Egelstaff) is
reasonable, it is clearly not as good as the agreement with the
LHA-LSC results. The predictions based on the Egelstaff QCF
lie between the classical and LHA-LSC predictions. It should

Figure 4. Relative contributions of nonclassical sampling and quantum
nonlocal terms, in the case of neat liquid oxygen. Shown are the VER
rate constants obtained at different temperatures, by using nonclassical
initial sampling and neglecting contributions from the nonlocal terms,
DU and DT (white circles). Also shown, for the sake of comparison,
are the LHA-LSC results (black circles) and classical results, i.e., with
classical sampling and neglecting the nonlocal terms (stars).

Figure 5. Relative contributions of centrifugal and potential forces,
in the case of neat liquid oxygen. Shown are the VER rate constants
obtained via LHA-LSC, at different temperatures, by taking into
account contributions from either only the centrifugal force, (squares),
or potential force (stars), or the cross terms (triangles). The overall
VER rate constants are also shown, for the sake of comparison (circles).
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be noted that Everitt and Skinner78 have previously reported a
better agreement between experiment and predictions based on
the Egelstaff QCF. However, this result was based on an older
version of the oxygen-oxygen pair potential and a different
extrapolation procedure. As it turns out, the agreement between
the Egelstaff QCF and experiment becomes slightly worse when
one employs a presumably improved pair potential developed
in a later paper by the same authors84 and our extrapolation
procedure (it should be noted that a technical inconsistency does
not allow for using the ansatz-based procedure employed in ref
78 in the case of the new pair potential).

Finally, we consider the relative importance of nonclassical
sampling, and of potential vs centrifugal forces, as a function
of mole fraction. The corresponding results are displayed in
Figures 7 and 8. As in the case of neat liquids, we found that
nonclassical sampling alone cannot capture the quantum me-
chanical enhancement of the VER rate to its fullest extent, and
that including the quantum nonlocal terms is essential for
obtaining a quantitative agreement with experiment. This

observation is also seen to be rather insensitive to the mole
fraction [cf. Figure 7]. The results displayed in Figure 8 show
that the contributions from the potential, centrifugal and cross
terms increase with increasing oxygen mole fraction. Since the
potential contribution dominates VER at the temperature
considered (77 K), it appears that the overall increase of the
VER rate with increasing oxygen mole fraction can be primarily
attributed to an increase in the number of intermolecular
vibration-rotation relaxation pathways.

VI. Summary

Within the framework of the Landau-Teller formalism, VER
rates are dictated by the high frequency FT of the quantum-
mechanical FFCF. The latter is typically dominated by the short
time dynamics of the FFCF, which the LSC approximation
appears to be able to capture accurately. In previous papers,
we have demonstrated the accuracy and feasibility of the LHA-
LSC methodology in the case of several benchmark problems66

and for neat liquid oxygen at 77 K.67 In the present paper, we
have extended the testing to other systems (neat liquid nitrogen
and liquid mixtures of argon and oxygen). We have also
provided a systematic analysis of the roles of nonclassical
sampling vs nonlocal terms and potential vs centrifugal terms,
as well as their dependence on temperature and the mixture
consistency. The predictions obtained via the LHA-LSC
method were found to be in very good agreement with
experiment in all of the cases considered, thereby demonstrating
its feasibility, flexibility and accuracy. The analysis also sheds
new light on the quantum nature of VER. More specifically,
nonclassical sampling alone is unable to quantitatively account
for the enhancement of the quantum mechanical VER rate
relative to its classical counterpart. However, quantitative
predictions can be obtained by accounting for the quantum
nonlocal terms. Furthermore, whereas VER is seen to be
dominated by the potential force, it is the nonclassical potential
force term which is responsible for it. The contributions of the
classical-like potential and centrifugal terms are observed to be
negligible in comparison to this term, and turn out to be
comparable in size because of the nonclassical initial sampling.

The results of the present paper further establish the LHA-
LSC method as an attractive alternative to the commonly used

Figure 6. Oxygen mole-fraction dependence of VER rates in liquid
mixtures of argon and oxygen, at 77 K. Shown are the results obtained
via the LHA-LSC approximation (circles), as well as the corresponding
experimental values (stars), and predictions based on classical mechanics
(squares) and the Egelstaff QCF (triangles).

Figure 7. Relative contributions of nonclassical sampling and nonlocal
terms in liquid mixtures of oxygen and argon. Shown are the VER
rate constants obtained at different oxygen mole fractions, by using
nonclassical initial sampling and neglecting contributions from the
nonlocal terms,DU andDT (white circles). Also shown, for the sake of
comparison, are the LHA-LSC results (black circles) and classical
results, i.e., with classical sampling and neglecting the quantum nonlocal
terms (stars).

Figure 8. Relative contributions of centrifugal and potential forces,
in liquid mixtures of oxygen and argon. Shown are the VER rate
constants obtained via LHA-LSC, at different mole fractions, by taking
into account contributions from either only the centrifugal force,
(squares), potential force (stars), or the cross terms (triangles). The
overall VER rate constants are also shown, for the sake of comparison
(circles).
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approach, which is based on the use of QCFs. Applications to
polyatomic molecular liquids, as well as the development of
more efficient computational tools, are currently underway in
our group and will be reported in future publications.
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Appendix: Useful Expressions for Calculating the
LHA -LSC Approximation of the FFCF

In this appendix, we provide explicit expressions of quantities
which are required for calculating the LHA-LSC approximation
of the FFCF in eq 13. The treatment is specialized to the case
of a liquid mixture which constitutes of atoms and homonuclear
diatomic molecules (cf. section II). The following notations and
conventions are used throughout:

1. Nact is the number of atoms and molecules in the active
cluster, whileNt is the overall number of atoms and molecules
in the active cluster and frozen cage. The atoms and molecules
are indexed such thati ) 0, ...,Nact - 1 correspond to the atoms
and molecules in the active cluster, ordered by their distance
from the tagged molecule (i ) 0 corresponds to the tagged
molecule), whilei ) Nact, ...,Nt-1 correspond to the atoms and
molecules that constitute the frozen cage.

2. Atoms are treated as single-site molecules. The variable
ns(i) indicates the number of sites, such thatns(i) ) 1 if the
index i corresponds to an atom, whilens(i) ) 2 if the indexi
corresponds to a molecule.

3. r iR,jâ ) r (iR) - r (jâ) is the vector that points from siteâ on
the jth atom/molecule to siteR on theith atom/molecule.xiR,jâ,
yiR,jâ andziR,jâ correspond to thex, y, andz coordinates of this
vector.riR,jâ ) |riR,jâ| corresponds to the distance between those
sites.

4.φ(riR,jâ) corresponds toφaa(riR,jâ) or φam(riR,jâ) or φmm(riR,jâ),
depending on whether the sitesr iR andr jâ belong to an atom or
a molecule.

5. r ) r (iR,0â) corresponds to the vector pointing from theâ
site of the tagged molecule to theR site on theith atom/
molecule.x ) x(iR,0â), y ) y(iR,0â) andz ) z(iR,0â) correspond to
thex, y, andzcoordinates of this vector, andr ) |r | corresponds
to its length.

6. Rj ) 3 - R (âh ) 3 - â), such that ifR ) 1, thenRj ) 2
and vice versa.

7. rj ) r (iR,0âh) corresponds to the vector pointing from theâh
site of the tagged molecule to theR site on theith atom/
molecule.xj ) x(iR,0âh), yj ) y(iR,0âh) andzj ) z(iR,0âh) correspond to
thex, y, andzcoordinates of this vector, andrj ) |rj| corresponds
to its length.

8. u ) u(0â) is the unit vector pointing from the center of of
mass of the molecule to itsâ site.ux, uy anduz are itsx, y, and
z components, respectively.

9. w(r) ≡ r3φ′′′(r) - 3r2φ′′(r) + 3rφ′(r), V(r) ≡ r2φ′′(r) -
rφ′(r) and l (r) ≡ rφ′(r), whereφ′(r), φ′′(r), andφ′′′(r) are the
first, second, and third derivatives of the LJ pair potential,φ(r),
respectively.

With the above notations and conventions, one may write
the overall potential energy in the following way:

It should also be noted that the potential energy includes the
intramolecular vibrational energy of the molecules in the active
cluster. The rigidity constraint imposed on those molecules is
reintroduced at a later stage by discarding the corresponding
high-frequency normal modes.

The LHA requires the calculation of the first and second
derivatives of this potential energy with respect to the Cartesian
coordinates of the atoms in the activated cluster.66 Those are
given by

Here, (x, x′) correspond to any combination ofx, y, andz, and
δ(a, b) is the Kroneckerδ function.

We next consider the calculation of the quantum nonlocal
termDU(Q0,Pn,0). The explicit expression of this term is given
in ref 67. As shown there, calculatingDU(Q0,Pn,0) requires
knowledge of the first and second derivatives of the potential
force with respect to the atomic coordinates. Explicit expression
of those derivatives are given below.

The first derivative ofFu with respect to thex coordinate of
the atom at theâ site of the tagged molecule is given by

The first derivative ofFu with respect to thex coordinate of
the atom at theR site of the other atoms or molecules is given
by

Similar expressions can be obtained for the corresponding
derivatives with respect to they andzcoordinates, by replacing
x with y or z.

∂V

∂x(iR)
) ∑

j*i

Nt

∑
â)1

ns(j)
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The second derivative ofFu with respect to thex coordinate
of the atom at theâ site of the tagged molecule is given by

The second derivative ofFu with respect to thex and y
coordinate of the atom at theâ site of the tagged molecule is
given by

The second derivative ofFu with respect to thex coordinate of
the atom at theâ site and thex coordinate of the atom at the
other,âh, site of the tagged molecule is given by

The second derivative ofFu with respect to thex coordinate of
the atom at theâ site and they coordinate of the atom at theâh
site of the same tagged molecule is given by

Similar expressions can be obtained for the other second
derivatives with respect to the coordinates of the tagged
molecule, by substituting the correspondingx, y, andz coordi-
nates.

The second derivative ofFu with respect to thex coordinate
of the atom at theâ site of the tagged molecule and thex
coordinate of the atom at theR site of the other atoms or
molecules is given by

The second derivative ofFu with respect to they coordinate of
the atom at theâ site of the tagged molecule and thex coordinate
of the atom at theR site of the other atoms or molecules is
given by

Similar expressions can be obtained for the other second
derivatives that mix the coordinates of the tagged molecule with

those of the other atoms and molecules, by substituting the
correspondingx, y, andz coordinates.

Finally, the second derivatives ofFu where both coordinates
do not belong to the tagged molecule are given by

and

Here too, similar expressions can be obtained for the other
second derivatives by substituting the correspondingx, y, and
z coordinates.
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